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Abstract. The structure of the wave of the phase transformation in the deterministic discrete 
model of non-equilibrium phase transitions is investigated. In this model each of the cells 
forming a two-dimensional lattice can be in one of three states: stable, mewstable or excited. 
The transition into the stable state is allowed only through an intermediate excited state. The 
change of Ihe phase state of each cell is initiated by the variarian of a continuous parameter, the 
‘temperature’, taking into account the energy exchange between cells. the phase stability regions 
and local rules i n  the neighbourhood of the cell. Taking the square and hexagonal lattices as 
examples, it is shown that this model possesses the following fundamental property: when the 
lifetime of the excited states is increased beyond a certain threshold, an abrupt change of the 
dynamics of the phase transition occurs. The wavefront then acquires a bem-like or fractal-like 
smcture and, in the latter case, the system of cells has a quasicontinuous frequency spectrum 
of white or coloured noise. The application of this model to the description of non-equilibrium 
(explosive) crystalliwtion in amorphous metals and semiconductors is discussed. 

1. Introduction 

There axe two opposite approaches which are used for the theoretical description of non- 
equilibrium multiphase systems. The standard method [I, 21 consists in the solution of 
continuous differential equations which take into account the movements of the phase 
boundaries and the heat sources associated with them. This approach requires the self- 
consistent consideration of the temperature field and the corresponding distribution of the 
regions of different phase contents, and, as a result, the exact mathematical solution can be 
obtained only in the most simple limiting cases. 

Another description of non-equilibrium systems is achieved through the discretization 
of the continuous dynamical variable and reduction of the global dynamics to the problem 
of the local interaction o f  discrete elements of the system with their nearest. neighbours. 
This idea is the basis of the different cellular automata models which are now applied to the 
description of spin dynamics [3], seismic phenomena [4], hydrodynamical problems [5] and 
even to the non-linear transport of carriers in semiconductors [6]. However, the description 
of the dynamics of the phase transitions in the cellular automata approach is complicated 
and as far as we know has been performed only foyspin-like systems in the neighbourhood 
of the percolation threshold [6-8]. 

The cellular automata approach may also give rise to the replacement of the continuous 
variable by a  finite^ number of its discrete values and, consequently, to the problem of 
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correspondence of the local rules to the exact microscopic physical model. A possible 
way to avoid this difficulty lies either in the increase of the number of grades of the 
discrete variable, or in the introduction of a continuous parameter whose variation will 
lead to discontinuous changes of the discrete system. In the latter case the model is no 
longer a classical cellular automaton [3, 111 but becomes intermediate between the two 
aforementioned approaches. It is this type of discrete<ontinuous model which has been 
applied to the description of the dynamics of earthquakes [4]. 

A similar approach was used in our work [9, IO] for the description of phase transitions 
in a mixture of stable and metastable phases. In this method [9, 101 the real medium is 
replaced by a discrete space consisting of cells having characteristic size L. The discrete 
variable is used to set the phase state of each element. The variation of the continuous 
variable. the temperature T ,  may induce changes of the phase state of each cell. From 
a formal point of view, each element (cell) of such a system is an elementary dynamical 
system with non-linear boundary conditions [IO, 121, but in contrast to what is found in the 
standard non-linear systems [12] in our case the cells are arranged in an may  and interact 
by the local rules characteristic of cellular automata models. 

In our previous work we have shown that this model allows us to describe quantitatively 
the threshold characteristics for the excitation of non-equilibrium (explosive) crystallization 
in amorphous solids. At the same time we found that in certain cases the front of the phase 
transition may acquire a complicated fractal-like structure. The aim of the present work is 
to study the most general characteristics of the wave of the non-equilibrium phase transition 
in this model 19, IO], including an analysis of the different regimes of the wave propagation 
and instabilities on the wavefront. 

2. Physical background and model formulation 

Let us consider a wave of non-equilibrium (explosive) crystallization propagating in an 
amorphous film as a result of local pulsed energy deposition. The typical rate of this 
process is about U = 102-103cms-' [13], whereas the crystalline area from the viewpoint 
of the temperature profile can be considered as a thermal domain with the temperature 
much higher than that of the initial state and with the sharp front associated with the phase 
boundary. 

Detailed analysis of the physical mechanisms of explosive crystallization [2, 101 
indicates that it is insufficient to take into account only amorphous (metastable) and 
crystalline (stable) phases. It is necessary to consider also special excited states on the 
front of the phase transformation which, in accordance with 12, IO, 141, appear to be 
the high-energy vibrations of a disordered amorphous network localized at a length-scale 
L ,., 1 nm and having a lifetime i ~ -  10-9-10-'os. Excitation of these states~can be 
detected by specific effects on the optical properties [I41 and results in (i) a drastic increase 
of the rate of crystallization and (ii) the equalizing of the rate of the dissipation of energy 
and the rate of the phase transition. The latter condition is necessary for a self-sustained 
wave of explosive crystallization. Hence in the approach of [Z, 10, 141 the formation of 
these excited states becomes the necessruy condition for the appearance of the fast phase 
transformations in amorphous materials. 

This physical model can be formalized in the following way [2, 10, 141. Each elemental 
volume of the sample is allowed to be in one of three phase states: stable (crystalline, 1 
in figure I(a)), metastable (amorphous, 2 in figure l(a)) and excited (3 in figure I(a)). We 
take the temperature T as the continuous dynamical variable whose variation induces the 
phase transitions and we will subsequently describe all energies in units of temperature 
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Figure 1. The energetic diagram in the discrete model of nonequilibrium phase transitions 
(a) and the stmcture of Lhe nearest neighbourhood Qz (thick black line) for the square (b) and 
hexagonal (c) lattices (the e e n M  e l l  CI is shaded). 

[lo]. The energy diagram, which determines the phase transitions (i.e. the change of the 
discrete variable), is shown in figure l(a). The parameter D sets the region of stability of 
the metastable state (2): T c D. when T = D, the phase transition 2+3 to the excited 
state takes' place with the jump of the temperature to the value T = D + EO (the heat 
of crystallization EO is released). In the process of the relaxation of the excited state (3) 
its temperature T decreases and at the point T = D + Eo - C the excited state becomes 
unstable and both the transitions 3+1 (to the stable crystalline state) and 3+2 (back to the 
metastable state) are possible. In the first case (3+ I)  T remains unchanged whereas in the 
second case (3+2) it is abruptly decreased by EO. The transition 1+3 becomes possible 
at T = EO + D and is not accompanied by any jump of T. It should be mentioned that 
direct transitions 2+1 and 1+2 are forbidden in the present model as a consequence of 
our assumption that the fast phase transition is controlled by the excited states [Z, 10, 141. 

Now we will assume that each elementary volume is one of the cells of the discrete 
space. The variation of the variable Tu for the cell with number 01 can be found by using 
the formula 

where summation is taken over the cells ,6 which belong to the nearest neighbourhood, ne, 
of the cell a. In the case of a phase transition, the T,-value calculated in accordance with 
the formula (1) is modified in accordance with the rules described above. The parameter w 
corresponds to the characteristic frequency of the process w - T-'. 

It is worth discussing whether there are any physical foundations to the introduction of 
the discrete space or whether it is a purely formal procedure. In the case of amorphous 
semiconductors the characteristic spatial scale is given by the correlation len-4, or in other 
words by the medium-range-order length, LMRO - 1 nm [15]. In some models of the 
amorphous state it is supposed that the amorphous solid can be described as an aggregate 
of more ordered 'rigid.' regions of size -LMRO separated by more disordered 'soft' parts 
of random network [16]. In this approach the low-frequency anomalies of the Raman or 
neutron scattering spectra [17, 181 find their natural explanations. Besides, as we have shown 
previously [2, 141, in the case of excitation of the fast-crystallization wave the localization 
radius for the excited states becomes about LMRO. Consequently in the framework of the 
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present approach it is reasonable to identify the size of the cell with the medium-range-order 
scale (figure 1). 

In order to complete the formulation of the model, one needs to set up the local rule 
for the discrete variable in R,. In our model the choice of  the transition type at the decay 
of the excited state ( T  = Eo + D - C) is controlled by the number of stable (crystalline) 
cells N, in R,: if NC > NO then the transition 3+1 rakes place and in the opposite case 
(Nc  i NO) we assume the 3+2 transition (figure 1). Hence the system of cells under 
consideration is fully deterministic and no stochastic rules are involved. 

It is well established that in deterministic non-linear systems the smooth variation of 
the controlling parameter may induce the threshold appearance of complicated or chaotic 
dynamics [12]. For the present model, the preliminary results obtained in [IO] have indicated 
that the variation of the parameter C, which sets the lifetime for the excited states (see 
figure I(a): the larger C, the longer the relaxation time of the excited state), may lead to a 
complicated structure of the wavefront of the phase transformation. In the present work we 
will examine this case in more detail for square and hexagonal lattices (the corresponding 
Q, are shown in figure 1, (b) and (c): for the square lattice we have chosen the Moore 
neighbourhood). The numerical calculation procedure is described in detail in [IO]. 

3. Results and  discussion 

Following [ 101 let us consider a flat interface between stable and metastable phases and 
introduce a point excitation on the boundary with temperature Tex. The other cells have 
temperature T = TO. If Tcx exceeds some critical value, a wave of crystallization begins to 
spread into the amorphous reZion [IO]. The temperature field develops a sharp boundary, 
with temperature T - Eo + D within the crystallized or excited region, so the shape of the 
wave is not affected by the boundary conditions until it reaches the edge of the array [IO]. 

We have taken the case where Eo = 100, D = 10 and TO = 9; it was shown earlier 
[IO] that the ratio Eo/D - 10 is characteristic for amorphous metallic films which undergo 
explosive crystallization 1131. The parameter NO in the local rule was set to No = 1. The 
calculations were performed on a 100 x 100 array of cells. 

To numerically calculate the time evolution of our model system, we have used the 
discrete analogue of equation (I). (The detailed procedure of this discretization has been 
described elsewhere [IO].) In order to verify the accuracy of the calculation of the evolution 
of each pattern, the time-step was varied and decreased to the level where the quantitative 
characteristics of the non-equilibrium wave propagation become insensitive to the time-step. 
Below, we will consider results for both the wavefront structure and the character of the 
propagation which are independent of this time discretization. 

3.1. The square lattice 

The variation of the phase transition wave structure which takes place when the parameter 
C increases is shown in figure 2 ( 1 4 ) .  If C is less than some critical value, C < CI = 0.6, 
the wave has a distinct boundary and excited states always lie on it (figure 2, 2). Exceeding 
this critical value leads to a complicated fractal wavefront (figure 2, 3-5). This behaviour 
continues up to C = Cz = 1.7 and for C > C2 the motion becomes stable again with the 
difference that a wave of excitation states begin to spread into the amorphous region instead 
of a crystallization wave (figure 2, 6). 

Qualitatively this change of regimes of the wave propagation can be explained by the 
change of ratio between the rate of dissipation and evolution of energy in the neighbourhood 
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Figure 2. The Structure of the wave of the non-equilibrium phase vansfomation on the square 
lattice. The metastable (amorphous) states are white, the excited states are black and the stable 
(crystalline) states are shaded. I ,  initial state; 2, C = 0.1; 3, C = 0.85: 4, C = 0.92; 5. 
C = 1.37; 6.  C = 2. 

of the phase transformation. When the lifetime of the excited state is low (when parameter 
C is small) the cell with the high temperature is able to excite only its nearest neighbours 
and the wave has a stable front. On the boundary we have a flop-like process 2-+3+1 
which controls the system dynamics (figure 2, 2). In the opposite limit of high C, when the 
lifetime of the excitation exceeds the dissipation time. r - w- I ,  the cells are almost unable 
to cool down fast enough. According to the local rules the excited states will begin to 
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spread into the amorphous region and the characteristic transition will be of the 2+3 type. 
This process is accompanied by the slow movement of the stable phase boundary (figure 2, 
6). In the intermediate case, when the rates of the energy dissipation and deposition are 
comparable the front instability appears when the excited and stable states become mixed 
(figure 2, 3-5). 

Let us consider now the time evolution of the system. The total number of each kind 
of cell in the array Ni (t) (where i = 1 ,2  or 3) is given by the equation 

S V Demishev et a1 

Ni( t )  = ivi(t) + " ( t )  (2) 
where H i ( t )  is the average over a characteristic time period, Gi(t) = (Ni(t)) representing 
the mean growth, and S N i ( f )  is an oscillating component for which (SNi(r)) = 0. The 
oscillating part is controlled by the dynamics of the transition process. 

Within the accuracy of our calculations it is possible to approximate &(t)  for various 
phases by using the power law 

&(t) - t u  (3) 
where a is the growth dimensionality which is different for each particular case. This is 
clearly demonstrated by figure 3 where logNI is plotted against logt.  The beginning of the 
Nl(t)-curve is controlled by the parameters of the initial excitation (figure 2, 1). After some 
time, the influence of the starting conditions becomes negligible and in this (quasistationary) 
limit the asymptotic behaviour follows equation (1). Similar plots were used to determine 
the growth dimensionalities for the excited and amorphous cells. The values of the indices 
011 and a3 (for the crystalline and excited states respectively) are shown in figure 4 for 
different values of C. 

M 6 - j  
0 

4 M i 
0 1 2 3 4 5 6 

log t 
Figure 3. The time dependence of the number of crystalline cells NI for the square lattice 
(C = 0.2). 

In the region where C < CI for the crystalline cells a, - 2, whereas for the excited 
states a3 - 1. This behaviour corresponds to two-dimensional self-similar growth with 
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Figure 4. Growth dimensionalities on the square 
lanice for the different phases: 1, stable (crystalline) 
states (el); 2, excited slates (q). 

Figure 5. The evolution of the frequency specua of the 
oscillating component for the square lattice. 

constant velocity of stable states and, to one-dimensional growth of the number of excited 
states located on the phase boundary respectively (figure 2, 2). 

When the instability arises for C =- CI the value of the a3-index first jumps up to 
a3 - 1.6 and then in the region 0.6 < C < 0.9 takes the asymptotic value 013 - 1.7 while 
the index f f I  - 1.8-1.9. For the interval 0.9 < C < 1.7 - Cz both indices are close to 
-1.7. For the values C =- C, the situation becomes opposite lo that for the range C < CI, 
i.e. q - 1, whereas a3 - 2 (figure 4; figure 2, 6). It can be clearly seen from figures 2 
and 3 that growth dimensions intermediate between 1 and 2 correlate with the excitation of 
fractal-like su.ucture. It should be noted that the errors in the determination of the growth 
dimensionalities from the slope of the log N I  versus log f curves are different for the various 
regions of the parameter C. Away from the C - CI and C - C,, where the motion is well 
established, the error is about 1% or less, whereas when C - Cl or C - C?, where the type 
of motion is changing, the error increases and can reach 10-15%. Similar error estimates 
are valid also for the hexagonal lattice (see below). 

The variation of the spectral characteristics of the oscillating component SN?(f )  for the 
excited states is shown in figure 5 (hereafter the frequency is given in units of w ) .  In the 
range C < CI there is one dominating frequency in the spectrum, which can be attributed 
to the continuous process of excitation and relaxation on the wavefront. 

Non-triviai behaviour is demonstrated in the region CI < C < Cz, where the spectrum 
acquires the character of white noise with the practically homogeneous filling of all of the 
.frequency range (figure 5 ) .  This shows that on the square lattice, fractal-like structure is 
accompanied by a transition to chaotic dynamics in the oscillating component SN3(t) .  For 
C =- C2 the system dynamics becomes ordered again, with the dominating frequency close 
to the initial one observed for C < CI. So the simple wave structure is unambiguously 
connected with the simple structure of the frequency spectrum (figure 5 and figure 2). 
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3.2. The hexagonal lattice 

In the case of a hexagonal lattice we find that the variation of the transition wave structure 
with parameter C has a more complicated character than in the case of the square lattice. 
It is possible identify four different types of behaviour corresponding to four ranges of the 
parameter C (figures 6-8). 

S V Demishev er a1 

n .~ 
I 1 4 '1 

Figure 6. The structure of the wave of the non-equilibrium phase transformation on the 
hexagonal lattice. The cells x e  marked in rhe same way a on figure 2 1. initial sfarc; 2. 
C = 0.98; 3, C = 1.01; 4. C = 1.10; 5. C = 1.11; 6, C = 1.15; 7, C = 1.18: 8, C = 1.27; 9. 
C = 1.36. 

In the interval 0 < C G 1.01 (region I) the wave movement is  stable, and fractal-like 
distortions are absent (figure 6,  2). Exceeding the critical value C = 1.01 leads to an abrupt 
variation of the structure of the phase transition wave: the growth of the crystalline phase 
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Figure 7. Growth dimensionality for the excited s t i e s  
on the hexagonal lattice. 

Figure 8. Space dimensionality for the diffennt 
SuuCtUreS on the front of the wave of h e  phase 
transition for the hexagonal lattice. 1. excited states 
(p3); 2, stable (crystalline) cells (PI). 

Figure 9. The evolution of lhe frequency spectra of the oscillating component for the hexagonal 
lattice 

appears to be aligned along several distinct directions outgoing from the initial point and 
as a result a beam-like structure is observed (figure 6, 3-4).~ This structure of the wave 
holds up to C - 1.1 (region 11). In region 111 (1.1 < C < 1.3) the beam-like structure 
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become diffusive and the wave exhibits fractal structure (figure 6, 5-8). Further increase of 
the parameter C (C > 1.3, region IV) induces a change of the crystallization wave to the 
excitation type and the movement becomes stable (figure 6, 9). 

The growth dimensionality a3 for the excited states is shown in figure 7. It is interesting 
that for the hexagonal lattice even in region I a complicated behaviour is observed: for 
C c 0.4 the index o(g takes the value wg = I, whereas for C > 0.4 the growth dimensionality 
increases up to 013 - 1.14. 

The excitation of the beam-like structures leads to the jump of 013 up to 013 - 2.1 
in region 11. In region 111, where the wave is characterized by a fractal-like structure, the 
growth dimensionality decreases from CIS - 2.1 to 013 - 1.9 when the parameter C is~varied 
in the interval 1.1 < C < 1.3 (figure 7). The resumption of the stable motion (region lV) 
manifests itself in the growth of the a3 to -2.1. Further increase of the C-parameter in this 
area leads to the asymptotic value of the growth dimensionality clj = 2 (figure 7). 

Comparison of the data for the square and hexagonal lattices indicates that, firstly, 
the region of instabilities on the hexagonal lattice is narrower, and, secondly, there are 
values c+ > 2 characteristic of the hexagonal lattice. In order to explain the latter fact 
let us consider the spatial dimensionality 6 for the structures shown in figure 6, which are 
calculated according to the definition 
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N;. - r p  (4) 
where r is the distance from the point of initial excitation and Ni-values are taken at fixed 
time. 

The results on the p-values (figure 8) show that the transition from region I to rcgion II 
is accompanied by a stepwise decrease of the pI-value for the crystalline (stable) states from 
01 - 2 to 81 - 1.1. The latter value corresponds to the quasi-one-dimensional structure of 
the beams. At the same time in region 11, for the excited states, we find that pa = 2. This 
space dimensionality can be obtained for the triangle structures (figure 6, 3) whose area is 
increased -r2 due to geometrical similarity. 

In region III the fractal-like structures can be characterized by the values 83 - I .8 and 
@r - 1.55 for the excited and crystalline states respectively. For C > 1.3 (region IV) the 
@$-value is close to 2 as one should expect for the two-dimensional area (figure 6, 9). 

Now we will introduce the velocity of the phase transition wave u ( t ) .  Assuming 
~ ( t )  - f y ,  after elementary integration one finds for the distance 

t Y - 1 .  (5)  

(6) 
It follows from the data in figure 7 and figure 8 that for C < 0.4 and C > 1.8 the index 

y3 for excited states is identically equal to zero, i.e. v =constant (for the one-dimensional 
excited structures on the front of the phase transition in the region I we assume 8 3  = I) .  
Also, within the interval 0.4 c C < 1.8 the condition 013 > pg holds and consequently 
y3 0, i.e. the wave propagation accelerates. Estimates show that for the hexagonal lattice 
the y-value lies in the range 0.05-0.15. However, the uncertainty in the values of 01 and p 
prevents us from determining whether the index y depends on C .  This question we leave for 
future investigations. It should be mentioned that this accelerated motion is characteristic 
only for the hexagonal lattice, whereas for the square lattice U = constant and y = 0. 

The fundamental differences between the square and hexagonal lattices are also 
displayed in the structure of the frequency spectra for the oscillating component fiN?(t) 
(figure 9). It is clearly seen that the characteristic discrete frequencies which determine 

Combining the formulae (3)-(5) we find a connection between these indices: 

Y = (01 - m/a. 
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the process of cell exciklion on the front of the phase transition can be observed over the 
whole range of the parameter C, including the interval of instabilities. It is interesting 
that at C - 0.4 the new component appears with frequency -1.3 and this remains in the 
spectrum up to C - 1 .S. This feature seems to correlate with the change of the type of the 
motion described above. We wish to emphasize that the maximum contribution from this 
frequency appears in the instability region (regions I1 and III). 

From the data in figure 9 one can deduce that in the case of fractal-like motion (region 
IV) the noise is no longer white and the correlation with the frequencies which determine 
the system dynamics out of this region still holds in the spectrum. This is very different 
from the case of the square lattice (figure 5). We believe that this difference in behaviour 
may be connected with the different symmetry of the local neighbourhood CZa. Indeed, in 
our model for both hexagonal and square lattices, all the cells are equivalent with respect 
to the energy exchange (formula (l)), and also for the Moore neighbourhood (figure l(b)) 
the comer cells and the cells which have a common edge are non-equivalent geometrically. 
Obviously for the hexagonal lattice all the cells are equivalent in both senses (figure l(c)). 
Consequently we may suppose that the more developed chaotic dynamics and quasifractal 
structures in the case of the square lattice are possibly connected with the lower symmetry 
of the Moore neighbourhood. 

4. Conclusion 

We have shown that the discrete deterministic model for the non-equilibrium phase 
transitions based on consideration of the three states (stable, metastable and intermediate 
excited) and local rules as described above possesses the following fundamental property: 
beyond a certain threshold, an instability develops in the phase transition wave. This 
wavefront acquires a beam-like or fractal-like structure depending on the local lattice 
geometry and in the latter case the system exhibits the signs of chaotic dynamicsin 
particular, a quasicontinuous spectrum reminiscent of white or coloured noise. The character 
of this unstable and stochastic behaviour differs drastically between the square and hexagonal 
lattices and this may be connected with the difference in local symmetry, which affects the 
application of the local rules. The choice of the model parameters was made through 
comparison with values relating to explosive crystallization in amorphous metals. In this 
latter case, fluctuations accompanying the explosive crystallization wave propagation have 
been observed experimentally [19]. This may serve as an additional argument in favour of 
the description of non-equilibrium phase transitions which is developed in the present work. 
It is also possible that the beam-like structures observed for the hexagonal lattice correlate 
with experimental data for explosive crystallization of a-Si films [20] where beam-like 
structures were observed using electron microscopy. Another interesting matter concerns 
the order of the phase transition which occurs in both the square lattice and hexagonal lattice 
as the growth dimensionalities change and the motion changes regime. Unfortunately, the 
accuracy achieved in calculating properties in the transition regime is insufficient to deal 
with this question and we defer it to a future investigation. 
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